Molecular systematics and character evolution in Caryophyllaceae
نویسندگان
چکیده
The aim of the present study was to infer a substantially larger, more evenly sampled, phylogenetic tree for Caryophyllaceae in order to more confidently resolve relationships within this clade. This would allow us to evaluate previous classification schemes and to infer the evolution of a number of characters that have figured prominently in higher-level taxonomic treatments. We have inferred a 630-tip phylogeny (ca. 30% of the 2200 species) using maximum likelihood analyses of data from the nuclear ribosomal ITS region and five chloroplast genes and intergenic spacers: matK, ndhF, trnL-trnF, trnQ-rps16, and trnS-trnfM. Our results confirm that subfamily Paronychioideae is paraphyletic at the base of Caryophyllaceae. Alsinoideae and Caryophylloideae together form a clade, within which neither subfamily is monophyletic. With only a few exceptions, our results support the tribal classification presented by Harbaugh & al. (2010). In agreement with other recent studies, it appears that many of the larger genera are not strictly monophyletic. Our results imply that the first Caryophyllaceae had stipules, free sepals, small apetalous flowers with few stamens, and single-seeded indehiscent or irregularly dehiscing utricles. Stipules were lost along the branch to the Alsinoideae-Caryophylloideae clade, and the evolution of a tubular calyx marks Caryophylloideae. The evolution of petals, 10 stamens, and capsule fruits is inferred to have taken place along the branch subtending a clade that includes Sperguleae (mostly containing former members of Paronychioideae) and the remainder of Caryophyllaceae. As this previously unnamed major group is both well-supported in molecular phylogenetic studies and marked by clear-cut apomorphies, we propose the name Plurcaryophyllaceae for this clade and provide a phylogenetic definition.
منابع مشابه
Phylogenetic systematics turns over a new leaf.
Long restricted to the domain of molecular systematics and studies of molecular evolution, likelihood methods are now being used in analyses of discrete morphological data, specifically to estimate ancestral character states and for tests of character correlation. Biologists are beginning to apply likelihood models within a Bayesian statistical framework, which promises not only to provide answ...
متن کاملCrossroads, Milestones, amd Landmarks in Insect Development and Evolution: Implications for Systematics
Our understanding of insect development and evolution has increased greatly due to recent advances in the comparative developmental approach. Modem developmental biology techniques such as in situ hybridization and molecular analysis of developmentally important genes and gene families have greatly facilitated these advances. The role of the comparative developmental approach in insect systemat...
متن کاملCrossroads, milestones and landmarks in insect development and evolution: implications for systematics.
Our understanding of insect development and evolution has increased greatly due to recent advances in the comparative developmental approach. Modern developmental biology techniques such as in situ hybridization and molecular analysis of developmentally important genes and gene families have greatly facilitated these advances. The role of the comparative developmental approach in insect systema...
متن کاملContribution to the molecular systematics of the genus Capoeta from the south Caspian Sea basin using mitochondrial cytochrome b sequences (Teleostei: Cyprinidae)
Traditionally, Capoeta populations from the southern Caspian Sea basin have been considered as Capoeta capoeta gracilis. Study on the phylogenetic relationship of Capoeta species using mitochondrial cytochrome b gene sequences show that Capoeta population from the southern Caspian Sea basin is distinct species and receive well support (posterior probability of 100%). Based on the tree topologie...
متن کامل